Vivekananda College of Engineering & Technology, Puttur [A Unit of Vivekananda Vidyavardhaka Sangha Puttur ®] Affiliated to VTU, Belagavi & Approved by AICTE New Delhi BS 14-10-2020 Rev 1.10 CRM08

CONTINUOUS INTERNAL EVALUATION- 1

Dept:BS	Sem / Div:III/A &B	Sub:Transform Calculus Fourier series and Numerical Techniques	S Code:18MAT31
Date:19-10-2020	Time: 9:30-11:00 am	Max Marks: 50	Elective: N
Note: Answer any 2	2 full questions, choosing	g one full question from each	part.

- Q			***************************************	Ques	tions				Marks	RBT	COs
N		Questions									
	PART A										
1 a		Obtain the Fourier series for the function $f(x) = x $ in the interval						8	L2	CO2	
	$-\pi \leq x \leq$	$-\pi \le x \le \pi$ and hence deduce that $\frac{1}{1^2} + \frac{1}{3^2} + \frac{1}{5^2} + \dots = \frac{\pi^2}{8}$									
b	Obtain sine half range Fourier series of $f(x) = \begin{cases} \frac{1}{4} - x & \text{if } 0 < x < \frac{1}{2} \\ x - \frac{3}{4} & \text{if } \frac{1}{2} < x < 1 \end{cases}$						8	L2	CO2		
С	Obtain the constant term and the first two harmonics in the Fourier series for f(x) given by the following.					ies 9	L2	CO2			
	x	0	1	2	3	i	4	5			
	y=f(x)	9	18	24	23	8	26	20			
			1	OR							
	Obtain the Fourier series for the function $f(x) = \begin{cases} \pi x & \text{if } 0 \le x \le 1 \\ \pi (2 - x) & \text{if } 1 \le x \le 2 \end{cases}$ and hence deduce that $\frac{1}{1^2} + \frac{1}{3^2} + \frac{1}{5^2} + \dots = \frac{\pi^2}{8}$					8	L2	CO2			
b	b If $f(x) = \begin{cases} x, & 0 < x < \frac{\pi}{2} \\ \pi - x, & \frac{\pi}{2} < x < \pi \end{cases}$. Then show that $f(x) = \frac{\pi}{4} - \frac{2}{\pi} \left[\frac{\cos 2x}{1^2} + \frac{\cos 6x}{3^2} + \frac{\cos 10x}{5^2} + + \dots \right]$					8	L2	CO2			
c	c Compute the constant term and first two harmonics of the Fourier series of						of 9	L2	CO2		
	f(x) given by										
	х	0	$\frac{\pi}{3}$	$\frac{2\pi}{3}$	π	$\frac{4\pi}{3}$	5	5π 2π 3		-08	
	f(x)	1	1.4	1.9	1.7	1.5	1	1.2 1.0			

Prepared by: Ravishankar N K

HOD: M.Ramananda Kamath

Vivekananda College of Engineering & Technology, Puttur

[A Unit of Vivekananda Vidyavardhaka Sangha Puttur ®]

Affiliated to VTU, Belagavi & Approved by AICTE New Delhi

CRM08

Rev 1.10

BS

14-10-2020

CONTINUOUS INTERNAL EVALUATION- 1

PART B							
Find the Fourier transform of $f(x) = \begin{cases} 1 & for x \le 1 \\ 0 & for x > 1 \end{cases}$ and hence evaluate $\int_{0}^{\infty} \frac{\sin x}{x} dx$	8	L2	CO3				
b Find the Fourier Sine transform of $e^{- x }$ and hence show that $\int_{0}^{\infty} \frac{x \sin mx}{1+x^{2}} dx = \frac{\pi}{2} e^{-m}, m > 0$	8	L2	CO3				
Find the z-transform of $\cos hn \theta$ and $\sin hn \theta$ and hence find z transform of $a^n \cos hn \theta$	9	L2	CO3				
OR							
Find the Fourier Sine transform of $\frac{e^{-ax}}{x}$, a>0	8	L2	CO3				
Find the Z-transform of $\cos n\theta$ and $\cos h(\frac{n\pi}{2}+\theta)$	8	L2	CO3				
Find the Z-transform of (i) $2n+\sin\frac{n\pi}{4}+1$ (ii)sin $(3n+5)$ (iii) $(n-1)^3$	9	L2	CO3				

Prepared by: Ravishankar N K

HOD: M.Ramananda Kamath

Page: 2